Battery PowerNormally, when you buy a pack of batteries, the package will tell you the voltage and current rating for the battery. For example, my digital camera uses four nickel-cadmium batteries that are rated at 1.25 volts and 500 milliamp-hours for each cell. The milliamp-hour rating means, theoretically, that the cell can produce 500 milliamps for one hour. You can slice and dice the milliamp-hour rating in lots of different ways. A 500 milliamp-hour battery could produce 5 milliamps for 100 hours, or 10 milliamps for 50 hours, or 25 milliamps for 20 hours, or (theoretically) 500 milliamps for 1 hour, or even 1,000 milliamps for 30 minutes.
However, batteries are not quite that linear. For one thing, all batteries have a maximum current they can produce -- a 500 milliamp-hour battery cannot produce 30,000 milliamps for 1 second, because there is no way for the battery's chemical reactions to happen that quickly. And at higher current levels, batteries can produce a lot of heat, which wastes some of their power. Also, many battery chemistries have longer or shorter than expected lives at very low current levels. But milliamp-hour ratings are somewhat linear over a normal range of use. Using the amp-hour rating, you can roughly estimate how long the battery will last under a given load.
If you arrange four of these 1.25-volt, 500 milliamp-hour batteries in a serial arrangement, you get 5 volts (1.25 x 4) at 500 milliamp-hours. If you arrange them in parallel, you get 1.25 volts at 2,000 (500 x 4) milliamp-hours.
Have you ever looked inside a normal 9-volt battery?
It contains six, very small batteries producing 1.5 volts each in a serial arrangement!