Neptune is the eighth or, occasionally, the ninth planet from the Sun due to Pluto's eccentric orbit (if Pluto is considered a planet), and the outermost gas giant in our solar system. Although the smallest of the gas giants, Neptune is more massive than Uranus: Its stronger gravitational field has compressed it to a higher density.
Faint dark rings have been detected around the blue planet, but are less substantial than those of Saturn. When these rings were discovered, it was thought that they might not be complete, but this was disproved by Voyager 2. Neptune also has 2,000 km/h winds of hydrogen, helium, and methane that gives the planet its blue appearance. At the time of the 1989 Voyager 2 flyby, it had in its southern hemisphere a Great Dark Spot comparable to the Great Red Spot on Jupiter. Neptune possesses nine confirmed moons and four awaiting confirmation. Neptune's largest moon, Triton, is notable for its retrograde orbit, extreme cold (38K), and extremely tenuous (14 microbar) nitrogen/methane atmosphere.
Neptune is named after the Roman god of the sea. It is represented in Unicode by a stylized version of the god's trident (¦·).
Discovered on September 23, 1846, Neptune has been visited by only one spacecraft, Voyager 2, which flew by the planet on August 25, 1989. In 2003, there was a proposal to NASA's "Vision Missions Studies" to implement a "Neptune Orbiter with Probes" mission that does Cassini-level science without fission-based electric power or propulsion. The work is being done in conjunction with JPL and the California Institute of Technology
Galileo's astronomical drawings show that he had first observed Neptune on December 27, 1612, and again on January 27, 1613; on both occasions Galileo mistook Neptune for a fixed star when it appeared very close (in conjunction) to Jupiter in the night sky. Believing it to be a fixed star, he cannot be credited with its discovery. At the time Galileo first observed Neptune on December 28, 1612, it was stationary in the sky because it had just turned retrograde that very day; because it was stationary in the sky and only beginning the planet's yearly retrograde cycle, its motion was far too slight to be detected with Galileo's small telescope. Had Neptune been moving at its regular/average speed when Galileo first observed it in 1612 and 1613, he would have most likely realized that it was a planet and not a fixed star due to Neptune's relatively rapid normal motion along the ecliptic compared to the extremely slow motion of any random fixed star found in the night sky.
Orbiting so far from the sun, Neptune receives very little heat ¡ª in fact the uppermost regions of the atmosphere are −218 ¡ãC (55 K). Because Neptune is a gas giant, there is no solid surface; as one ventures deeper and deeper inside the layers of gas, however, the temperature rises steadily. It is thought that this may be leftover heat generated by infalling matter during the planet's birth, now slowly radiating away into space. Neptune's atmosphere has the highest wind speeds in the solar system, up to 2000 km/h, thought to be powered by this flow of internal heat.
The internal structure resembles that of Uranus. There is likely to be a core consisting of (molten) rock and metal, surrounded by a mixture of rock, water, ammonia, and methane. The atmosphere, extending perhaps 10 to 20 percent of the way towards the center, is mostly hydrogen and helium at high altitudes, but has increasing concentrations of methane, ammonia, and water as it approaches and finally blends into the liquid interior. The pressure at the center of Neptune is millions of times more than that on the surface of Earth. Comparing its rotational speed to its degree of oblateness indicates that it has its mass less concentrated towards the center than does Uranus.
Neptune also resembles Uranus in its magnetosphere, with a magnetic field strongly tilted relative to its rotational axis at 47¡ã and offset at least 0.55 radii (about 13,500 kilometres) from the planet's physical center. Comparing the magnetic fields of the two planets, scientists think the extreme orientation may be characteristic of flows in the interior of the planet and not the result of Uranus' sideways orientation.
One difference between Neptune and Uranus is the level of meteorological activity. Uranus is visually quite bland, while Neptune's high winds come with notable weather phenomena. The Great Dark Spot, a cyclonic storm system the size of Eurasia, was captured by Voyager 2 in the 1989 flyby. The storm resembled the Great Red Spot of Jupiter, but was shown to have disappeared in June 1994. However, a newer image of the planet taken by the Hubble Space Telescope on November 2, 1994, revealed that a smaller storm similar to its predecessor had formed over Neptune¡¯s Northern Hemisphere. Unique among the gas giants is the presence of high clouds casting shadows on the opaque cloud deck below.
Neptune has a faint planetary ring system of unknown composition. The rings have a peculiar "clumpy" structure, the cause of which is not currently understood but which may be due to the gravitational interaction with small moons in orbit near them.
Evidence that the rings are incomplete first arose in the mid-1980s, when stellar occultation experiments were found to occasionally show an extra "blink" just before or after the planet occulted the star. Images by Voyager 2 in 1989 settled the issue, when the ring system was found to contain several faint rings. The outermost ring, Adams, contains three prominent arcs now named Libert¨¦, Egalit¨¦, and Fraternit¨¦ (Liberty, Equality, and Fraternity). The existence of arcs is very difficult to understand because the laws of motion would predict that arcs spread out into a uniform ring over very short timescales. The gravitational effects of Galatea, a moon just inward from the ring, are now believed to confine the arcs.
Several other rings were detected by the Voyager cameras. In addition to the narrow Adams Ring 63,000 km from the centre of Neptune, the Leverrier Ring is at 53,000 km and the broader, fainter Galle Ring is at 42,000 km. A faint outward extension to the Leverrier Ring has been named Lassell; it is bounded at its outer edge by the Arago Ring at 57,000 km.5
New Earth-based observations announced in 2005 appeared to show that Neptune's rings are much more unstable than previously thought. In particular, it seems that the Libert¨¦ ring might disappear in as little as one century. The new observations appear to throw our understanding of Neptune's rings into considerable confusion.